جلسه بیست و یکم : راه اندازی سروو موتور

سلام
تو جلسه های قبلی در مورد راه اندزای موتور DC مفصل صحبت کردیم یادتونه ؟ جلسه دهم .
این جلسه قصد دارم در مورد سروو موتورها صحبت کنم .
مثل روند بقیه جلسه ها اول از خود سروو موتور می گیم. سروو موتور در حقیقت همون موتور DC هست که تو ساختمان داخلیش یه فیدبک اضافه شده . فیدبکی که به ما کمک می کنه بتونیم موقعیت ( یا قشنگ تر بگم زاویه ) سروو رو دقیق تعیین کنیم. مثلا بهش بگیم برو تو زاویه 45 درجه وایسا ! حالا این که چجوری میفهه کجا وایسه رو اینجا به صورت دقیق آموزش داده .

حتما لینک پیشنهاد داده شده رو بخونید چون علاوه بر این که در مورد سروو حرف میزنه بهتون میگه فرق این موتور با موتور DC چیه . ( ناگفته نمونه که تعدادی از سروو موتورها هستن که از موتور AC ساخته می شن اما مورد بحث ما نیستن ولی اینجا بهشون اشاره شده که می تونید استفاده کنید.)

*** یکی ازمهم ترین خاصیت موتورهای سروو این هست که جریان مورد نیازشون در مقایسه با خود موتور های DC کمتره و همین یعنی یه امتیاز مثبت.

توی خیلی از دستگاه ها و به خصوص ربات ها از این موتورها استفاده میشه . دلیل اول این که کم مصرفه و دلیل دوم اینه که اگر درست سر جای خودش قرار بگیره با زاویه دادن میشه خیلی خوب و دقیق کنترلش کرد.

***********************************************************
سروو موتورها دو دسته بندی اساسی دارن .
دسته بندی اول سروو 180 و سروو 360 هست.
سرووهای 180 تنها زاویه ای بین 0 تا 180 (در عمل حدود 175 ) رو قبول می کنن و خارج از این نیم دایره نمی چرخن .
سروو 360 چی ؟ لابد فکر می کنید این سروو زاویه بین 0 تا 360 رو میگیره نه ؟ باید بگم که نخیر . اینجوریا نیست . سروو 360 اصلا زاویه نمی گیره . بلکه فقط دور می زنه . یعنی چی ؟
تو کدی که در آینده می زنیم خواهید دید که یه جا میگیم : (myservo.write(45 . این برای سروو های 180 یعنی سروو جان برو تو زاویه 45 درجه وایسا . اگر همین خط کد رو بدیم به یه سرو 360 این سروو 45 بار دور خودش می چرخه . یعنی هر عددی که در آرگومان این دستور نوشته بشه تعیین کننده تعداد دور هست.

***********************************************************
دسته بندی دوم مربوطه به سرووهای دیجیتال و آنالوگ هست . تفاوت عمده این سروو ها بر سر دقت و سرعت هست که تو این فروم خیلی ساده و خوب توضیح داده شده و نیازی به تکرار نیست.

***********************************************************

خب این جا معرفی اولیه سرووها تموم شد . حالا قصد داریم با استفاده از آردوینو راه اندازیش کنیم . این جا دو تا حالت مختلف بوجود میاد :
یکی این که سروویی که انتخاب می کنیم آمپر پایین باشه و برای تامین توان مصرفیش خود آردوینو پاسخگو باشه . سرووهایی مثل این سروو :
H512-SG90-500x500 برای راه اندازی این سرووها سیم بندی مثل شکل زیره :
Arduino-Servo-Basic
یعنی GND و VCC از آردوینو تامین میشه و سیم سیگنال سروو (که میشه سیم نارنجی ) وصل میشه به پین PWM شماره 9 . دقت کنید به جای پین شماره 9 هر پین PWM دیگه ای میشه .

حالت دومی که اتفاق می افته اینه که امپر مورد نیاز سروو از آمپری که آردوینو میتونه براش تامین کنه بیشتر بشه در این صورت نمی تونیم پاور موتورمون رو از آردوینو بگیریم . سرووهایی مثل این سروو :
MG995_Metal_Gear_Servo_2-500x500

برای تامین پاور قائدتا باید بریم سراغ منبع تغذیه های با آمپر بالا . پیشنهاد من 5 ولت 1 آمپره . حالا سیم بندیمون رو چجوری انجام بدیم ؟

2016-03-28_10-29-52


اگه به عکس دقت کنید اومده پین سیگنال سروو رو به پین دیجیتال شماره 9 وصل کرده
پاور سروو ( 5 ولت ) رو از منبع خارجی گرفته .
گراند سروو و گراند منبع و گراند آردوینو هر سه به هم وصل شدن .به این کار میگن زمین مشترک کردن. این نکته فوق العاده مهمه که اگه داریم توی پروژه هامون از منبع خارجی استفاده می کنیم گراند منبعمون با گراند آردوینومون یکی بشه . برای این که درک کنید یه مثال می زنم .
فرض کنید قراره دو عدد رو پیدا کنیم که اختلافشون 5 باشه . این دوتا عدد میتونن 0 و 5 باشن، میتونن 0.5 و 5.5 باشن، میتونن 1 و 6 باشن و هزارتا حالت دیگه . درسته ؟ اختلاف همه این عددها یکیه ولی هیچ دو دسته ایشون با هم مساوی نیستن . توی آردوینو هم دقیقا همینه . منطق کاری آردوینو 5 ولته یعنی حداقل ولتاژ 0 و حداکثر ولتاژ 5 ولته . منبعی هم که الان وصل کردیم 5 ولته . یعنی اختلاف حداکثر و حداقل ولتاژش 5 ولته . حالا ما با ایجاد زمین مشترک بین منبع و آردوینو داریم میگیم دامنه تغییر ولتاژ هر دو از 0 تا 5 ولت باشه نه هر دامنه تغییر دلخواهی چرا که تو عالم الکترونیک و میکروکنترلر 5 ولت و 5.5 ولت خیلی اختلاف دارن . بنابراین توی این مساله همیشه گراند مشترک رو رعایت کنید.

***********************************************************

خب سیم بندی که انجام شد میریم سراغ کد:
2016-03-28_10-39-32

قسمت 1 : معرفی کتابخونه سروو . این کتابخونه کتابخونه پیش فرض آردوینو هست و هیچ احتیاجی نداره که بخواین اضافه کنین به کتابخونه های آردوینو.
قسمت 2 : معرفی آبجت myservo از کلاس Servo
قسمت 3 : با این خط کد داریم میگیم پین pwm ای که سیم سیگنال سروو رو بهش وصل کردیم پین شماره 9 هست.
قسمت 4 : با دستور myservo.write داریم به سروو زاویه ای رو که میخوایم بهش برسه میگیم . اول بهش میگیم برو تو زاویه 0 درجه وایسا ، یک ثانیه بهش زمان میدیم ((delay(1000) ، بهش میگیم برو تو زاویه 90 درجه وایسا ، یک ثانیه بهش زمان میدیم ، بهش میگیم برو تو ازویه 180 وایسا ، یک ثانیه بهش زمان میدیم و در آخر بهش میگیم تو زاوه 90 وایسا . اینجا LOOP تموم میشه و دوباره بر میگرده از اول و میره تو موقعیت 0 بعد 90 بعد 180 و الی آخر .

جلسه بیستم : بازر (زنگ اخبار)

خب تو این جلسه قصد دارم براتون در مورد بازر حرف بزنم و بعد بریم سراغ راه اندازی بازر با آردوینو .
خب بازر چیه ؟
به زبون ساده بازر همون بوقه ! بوقی که موقع بوت شدن سیستم عاملتون می شنوید همین صدای بازری هست که تو مدار داخلی سیستمتون استفاده شده. یه نمونه بازر مثل عکس زیر هست :
a-875
اگه می خواین دقیق تر از این که بازر چیه و چطوری کار می کنه اطلاعات داشته باشین به این لینک سر بزنید .
برای خریدن بازر هم به اینجا سربزنید .وقتی لینک رو باز کنید دو نمونه بازر متفاوت می بینید : اکتیو بازر و پسیو بازر .
خب حالا کدوم رو بخریم ؟ اصن فرقشون چیه ؟

اکتیو بازر :
اکتیوبازر بزرگترین حسنش اینه که کد نویسیش در حد کد نویسی راه اندازی یه LED هست. یعنی کافیه پین سیگنالش رو 0 و 1 کنید. دلیل این که راه اندازی این بازر انقدر ساده هست اینه که صدای بیپ تو مدار داخلی خودش ساخته میشه و فقط کافیه بهش بگی بنواز (با یک کردن پین سیگنالش بهش این دستور رو میدیم). بزرگ ترین عیب این بارزها هم اینه که صدایی که می تونید باهاش دربیارید فقط یک تن یا اصطلاحا فرکانس داره و هیچ تن صدای دیگه ای از این بازر خارج نمیشه.
ACTIVE-BUZZER-SQ1 (2)-500x500

همونطور که میبیند 3 تا پین داره :
VCC که بهتره 5ولت آردوینو بهش مصل بشه (3.3 هم می تونید البته ).
GND که به گراند آردوینو وصل میشه .
I / O که وصلش می کنیم به یکی از پین های دیجیتال آردوینو (به پین دیجیتال وصلش می کنیم چون طبق توضیح بالا فقط کافیه 0 و 1 بشه) . من به پین شماره 8 وصل کردم شما می تونید به هر پین دلخواهی وصلش کنید.

مدار سادس .
خب حالا کد زیر رو آپلود کنید :
2016-03-02_11-08-24
می بینید؟ کد دقیقا کد ساده LED چشمک زنه .

اپلود کنید و صدا رو بشنوید . با فاصله های 1 ثانیه داره بیپ بیپ می کنه. اگر می خواین که این فاصله ها تغییر کنه می تونید با عددهای تابع های delay بازی کنید.

                     ——————————————————————————–
پسیو بازر:

داستان پسیو بازر دقیقا بر عکسه . کد نویسی این بازرها به مراتب پیچیده تر از اکتیو هاست در عوض هر فرکانسی که دوست داشته باشیم رو می تونیم تولید کنیم. دلیل این موضوع اینه که این بازرها به دلیل ساختار مدار داخلیشون نمی تونن خودشون صدا تولید کنن و فقط می تونن صدایی که تولید شده رو پخش کنن.این بازرها یه جورایی مثل اسپیکر عمل می کنن با این فرق که اینا اسپیکر های قابل کنترل هستن یعنی میشه با برنامه نویسی بهشون بگی چه زمانی بخونن (البته فرق های دیگه ای هم دارن که لازم نیست زیاد واردشون بشیم ). خب حالا که اینا خودشون نمیتونن صدا تولید کنن و وظیفه تولید صدا افتاد گردن ما ، ما هم هر صدایی با هر فرکانسی که دوست داشته باشیم تولید می کنیم و می دیم به این بازرها که برامون پخش کنن. اما یه سوال پیش میاد . خب حالا چطوری صدا تولید کنیم ؟ ما که ماکزیمم یه آردوینو بیشتر نداریم چجوری صدا تولید کنیم ؟
ما با آردوینومون موج هایی تولید می کنیم که با انتقال اونها به بازر ، صدا تولید بشه. برای این کار از خاصیت سیگنال های PWM استفاده می کنیم. ما سیگنال های مربعی با Duty cycle ها و دامنه های متفاوت تولید می کنیم و اونها رو برای بازر می فرستیم . بازر با دریافت این سیگنال های مربعی و انتقال اونها به پیزو داخلیش ، برای ما می نوازه. بنابراین کل کاری که ما انجام میدیم تولید سیگنال های مربعی هست.
یه کم در مورد خط بالا بیشتر توضیح بدم : تا حالا موج مربعی دیدید دیگه درسته ؟
pwm1
توی موج مربعی یه زمان هایی 0 هستیم و یه زمان هایی 1 هستیم . مثلا فرض کنید دوره تناوب هر موج مربعی که ما می سازیم 10 ثانیه باشه ( یعنی شکل موج مربعی ما هر 10 ثانیه تکرار میشه ) .نسبت اون مدت زمانی رو که موج مربعی در وضعیت 1 قرار داشته به 10 میشه Duty cycle. به شکل بالا نگاه کنید. توشکل پایین پایینی تمام مدت زمان موج در وضعیت 1 قرار داشته بنابراین Duty cycle اش میشه 100 درصد. برعکسش تو موج بالا بالایی همیشه 0 بوده بنابراین Duty cycle اش میشه 0 درصد. هر چی مدت زمانی که شکل موج در وضعیت 1 هست بیشتر باشه Duty cycle هم بیشتر میشه .حالا ما باید بیایم برای راه اندازی بازرمون همچین شکل موج هایی رو با آردوینو تولید کنیم .
خب مدار مطابق حالت قبله فقط با یه تفاوت کوچیک :
VCC که بهتره 5ولت آردوینو بهش مصل بشه (3.3 هم می تونید البته ).
GND که به گراند آردوینو وصل میشه .
I / O که وصلش می کنیم به یکی از پین های PWM دیجیتال آردوینو . دقت کنید الان خیلی مهمه که پینی که استفاده می کنیم PWM باشه مثلا من از پین شماره 9 استفاده می کنم.
2016-03-02_12-08-45

خب قسمت های مختلف کد :
1. معرف پین 9 به عنوان پین متصل به بازر
2. تعریف تابع beep . این تابع 2 تا ورودی داره یکیش فرکانسه ، یکیش زمان delay بر حسب میلی ثانیه .
این تابع میاد مقدار فرکانس رو میگیره و به جای آرگومان analogWrite میزاره با این کار دامنه حداکثر سیگنال مربعی تولید شده مساوی این عدد میشه . یعنی توی شکل موج هامون دامنه ممکنه دیگه حداکثر 1 نباشه و کمتر بشه (بستگی داره به عددی که ما انتخاب می کنیم). بعد به ازای delayms میلی ثانیه صبر می کنه . بعد مقدار analogWrite رو مساوی 0 قرار میده (برای ساخت قسمت 0 شکل موج مربعی ) و دوباره به ازای delayms میلی ثانیه صبر می کنه . دقت کنید الان delayms میلی ثانیه مقدار حداکثر دامنه شکل موج برابر مقدار فرکانسه (freqency )و delayms میلی ثانیه مقداربرابر 0 هست بنابراین در این مدل کد نویسی Duty cycle موج مربعی ما 50 درصده.
3. بعد از کانفیگ پین بازر ، 3 بار تابع بیپ صدا زده میشه و هر بار دامنه (فرکانس صدا ) برابر 20 و زمان توقف بین بیپ ها 50 میلی ثانیه در نظر گرفته میشه. و در آخر هم یه دستور delay گذاشته شده که نشون بده تابع ستاپ تموم میشه.
4.در اینجا تابع بیپ با فرکانس 80 و زمان توقف 5 میلی ثانیه صدا زده شده چون تابع LOOP هستیم این خط تا بینهایت ادامه پیدا می کنه.
با تغییر عدد های فرکانس (که میشه آرگومان اول ورودی تابع بیپ ) از بازه 0 تا 255 می تونید فرکانس های بیپ مختلف رو بوجود بیارید.

با تغییر عدد زمان توقف (که میشه آرگومان دوم ورودی تابع بیپ ) فاصله بین بیپ ها رو تنظیم می کنید.

این کد صرفا یه دمو بود. شما بر حسب این که چه زمانی می خواید آلارم فعال بشه و با چه فرکانس و زمان توقفی ، از تابع beep نوشته شده استفاده می کنید.

پایان جلسه.

جلسه یازدهم : میکروسوئیچ

به نام خدا
سلام به دوستان

راستش قصد داشتم جلسه بعد برم سراغ سروو . ولی یه کم فکر کردم دیدم هنوز پروژه بیس زیاد داریم که بهتره اول اونا رو بگم بعد بریم سراغ سروو و ادامه ماجرا.
یه روند جدید: اول هر کاری که میشه با پین های دیجتال آردوینو کرد رو یاد میگیریم بعد میریم سراغ آنالوگ ها.
تا الان هر پروژه ای که انجام دادیم از پین های دیجیتال آردوینو به صورت خروجی استفاده کردیم. مثلا موقعی که یه LED ساده روشن کردیم، یا موقعی که RGB LED روشن کردیم و یا تو پروژه آخر یعنی موتور DC. همه جا پین دیجیتال خروجی بود یعنی ما ( آردوینو ) به فلان پایه دستور می دادیم 0 شو، یا 1 شو یا در مواقع pwm عدد متغیر می دادیم( انشاءالله که یادتونه).

الان نه! می خوایم از پایه دیجیتال بخونیم. فرض کنید یه سنسور دیجیتال داریم مثلا تشخیص حرکت . روش کار این سنسور دیجیتال اینطوریه که اگه کسی از جلوش رد بشه 1 رو بر میگردونه و در حالت عادی هم روی پایه سیگنالش 0 می افته. حالا این سنسور با این شرح عملکرد تو محیط قرار گرفته. اگه بخوایم داده سنسور رو با استفاده از آردوینو بخونیم مسلما باید بریم سراغ پین های دیجیتال ( چون سنسور دیجیتاله) و پین دیجیتال رو به عنوان ورودی استفاده کنیم . حالا این که اصن چرا اصرار دارم ورودی باشه؟
ببینید وقتی می خواستیم یه LED رو روشن کنیم ما دستور می دادیم که روش بشه در نتیجه فرمان دهنده ما بودیم. الان داستان کاملا برعکسه. الان سنسور داره دستور میده . وقتی روی پایه سیگنالش عدد 1 بیفته یعنی داره خبر میده که یکی از جلوش رد شده. بنابراین ما در نقش پذیرنده فرمان هستیم و به همین علت ساده پین دیجیتال متصل به سنسور از نوع ورودی تعریف میشه.

حالا تو این جلسه به جای این که از سنسور به عنوان تولید کننده پالس دیجیتال استفاده کنیم از سوئیچ استفاده می کنیم. سوئیچ ها خیلی متنوع هستن چند نمونش رو ببینید:
tact-switch-500x500push-switches-250x250

ولی ما از هیچ کدوم اینا استفاده نمی کنیم. از این ماژول استفاده می کنیم.
5-Way_Tactile_Switch-500x5005-Way_Tactile_Switch_2-500x500

سوئیچ های معمولی فقط بهت میگن فشار داده شدن یا نه ولی این سوئیچ علاوه بر اون قابلیت بهت میگه در کدوم جهت فشار داد شده. اگه به عکس پشت ماژول نگاه کنین علاوه بر پایه VCC (پایه ولتاژ) و GND (زمین) 5 تا پایه دیگه هم بیرون کشیده شده که به این صورتن:
Right (راست)، Down (پایین)، Left (چپ)، Center (مرکز) و Up (بالا).
حالا اگه کلید به سمت بالا فشار داده بشه پایه منطق پایه Up یک میشه ( از نظر ولتاژی یعنی ولتاژ این پایه ماژول 5 ولت میشه ) ، اگه کلید به سمت چپ فشار داده بشه پایه منطق پایه Left یک میشه و الی آخر.

برای اتصال این ماژول به آردوینو باید علاوه بر اتصال VCC و GND ، بقیه پین ها رو به 5 تا پین دیجیتال وصل کنیم.
اگه یادتون باشه (آیا؟) جلسه های قبل برای اتصال LED و موتور با یه سوال بزرگ مواجه می شدیم و سوال این بود که آیا به هر پین دیجیتالی می تونیم وصل کنیم؟ اونجا متناسب با پروژه جواب فرق داشت یا آره بود یا نه بود. اما تو مقوله استفاده از پین دیجیتال به عنوان ورودی هیچ استثنایی وجود نداره و از هر پین دیجیتالی میشه استفاده کرد بنابراین راحت باشید.

بنابراین اتصال ماژول به آردوینو به صورت زیر خواهد بود:
tactile

5 تا پین دیجیتال استفاده شده در این مدار می تونن هر 5 پین دیجیتال دلخواهی باشن.
مدار رو بستید؟
تمام؟
خب میریم سراغ کد نویسی
نرم افزار آردوینو رو باز کنید تا شروع کنیم.
پروژه ما اینه: هر جهتی که سوئیچ فشار داده شد تو کنسول آردوینو اون جهت نوشته بشه، مثلا اگه کلید به سمت پایین فشار داده شد تو کنسول نوشته بشه Down.
قدم اول نوشتن هدر برنامه هست:
ببینید تو هدر برنامه صرفا معرفی می کنیم، حالا این معرفی میتونه پین های مورد استفاده باشه، می تونه کتابخونه های مورد استفاده باشه و یا متغیرهایی که در طول برنامه قراره روشون کار کنیم. تو این پروژه ما از هیچ کتابخونه خاصی استفاده نمی کنیم بنابراین فقط پین هایی رو که استفاده کردیم براشون اسم انتخاب می کنیم(همون معرفی)
مثلا شماره پینی که به پین راست ماژول سوئیچ وصل شده پین شماره 6 آردوینو هست. تو هدر برنامه اسم این پین رو right_pin گذاشتیم. با این کار تا آخر برنامه هر بار با این پین کار داشته باشیم از اسم right_pin استفاده می کنیم. در مورد 4 پین دیجیتال دیگه هم همین قانون حاکمه.

2015-12-16_13-38-43

مرحله بعد تابع setup هست. قرارمون این بود که هر چی کانفیگ داریم رو بزاریم تو این تابع. الان چند تا کانفیگ داریم یا به زبون دیگه چیا رو باید کانفیگ کنیم؟
چون قراره خروجی کار رو تو کنسول ببینیم یکی از کانفیگ ها تنظیم نرخ داده (Baude Rate) هست که روی 9600 تنظیمش می کنیم.
از طرف دیگه داریم 5 تا پین دیجیتال رو استفاده می کنیم که طبق قوانین مطرح شده تو جلسات قبل لازمه ورودی بودنشون تو تابع setup بیان بشه.
بنابراین دو تا کانفیگ لازم داریم که به صورت زیر کد نویسی می کنیم:
2015-12-16_13-42-48

و اما تابع loop:
خب روند کار تو این تابع اینطوری هست که اول مقدار پایه دیجیتال رو می خونیم و توی یه متغیر نگهش می داریم .اگه مقدار 1 بود ( که یعنی کلید فشار داده شده) کامند مناسب اون رو تو کنسول چاپ می کنیم. من کد برای یه پین رو می نویسم که به صورت زیر میشه:
2015-12-16_13-53-21
کد رو با 4 قسمت مختلف از هم جدا کردم که تک به تک میریم جلو:

1.هر خطی که با دو تا اسلش شروع بشه (//) جزء دستور و خط برنامه به حساب نمیاد و اصطلاحا بهش میگن کامنت (بعدا خودمون هم کامنت میزاریم)
2.روند رو یادتونه؟ گفتم اول پایه دیجیتال آردوینو رو می خونیم. تو این خط برنامه دقیقا داریم همین کار رو می کنیم. به کمک دستور digitalRead مقدار پین دیجیتال رو می خونیم. همونطور که میبیند این دستور یه ورودی داره که همون پین دیجتالی هست که قراره خونده بشه. الان تو ورودی تابع right_pin نوشته شده که اسم دیگه همون پین دیجیتال شماره 6 هست. مقدار خونده شده توسط دستور digitalRead (که یا 0 هست یا 1) درون متغیر right_value ریخته شده.
3.قدم بعد باید چک کنیم داده خونده شده از پین دیجیتال 1 بوده یا نه؟ هر جا شرطی ایجاد میشه یعنی تابع if : الان تو تابع if گفتیم اگه مقدار متغیر right_value ( که همون داده پین دیجیتال رو داره) مساوی با 1 بود (یعنی کلید به سمت راست فشار داده شده بود) بیا کل دستورهای بین دو آکولاد رو اجرا کن.
2015-12-16_14-06-23
4.در صورتی که کلید به سمت راست فشار داده شده باشه بنابراین برنامه وارد این تابع if میشه و با دستور Serial.println ما کلمه Right رو توی کنسول چاپ می کنیم و تمام.

همونطور که گفتم این فقط مال یک پین بود برای 4 تا پین دیگه منطق کد نویسی دقیقا به همین شکل هست. اگر در ادامه دادن برنامه مشکل داشتید کافیه تو انجمن مطرح کنید.

جلسه دهم: راه اندازی موتور DC

سلام به همه دوستان
این جلسه قصد دارم در ادامه رسالت PWM یک موتور DC رو با هم راه اندازی کنیم. بین این جلسه و جلسه قبل تفاوت های سخت افزاری وجود داره وگرنه منطق کار عینا مثل روشن کردن ال ای دی RGB هست.

خب شروع می کنیم. قدم اول موتور DC چیه اصن؟
برای درک موتور DC و این که توش چه خبره یه سرچ کوچیک بزنید دنیای اطلاعات رو خواهید دید ولی علی الحساب این لینک یه توضیح جمع و جور و مناسب برای طرز کار این موتورها نوشته.

حالا قراره این موتورها رو با آردوینو کنترل کنیم. منطق کنترل موتورهای DC استفاده از PWM هست. یه کم موضوع رو باز کنیم.
ببینید ما با موتور مثل یک مقاومت یا هر المان دیگه ای رفتار می کنیم. اگه قرار باشه از یه مقاومت جریانی عبور کنه طبق قوانین مداری باید دو سر المان اختلاف ولتاژ وجود داشته باشه مثل شکل زیر:
Untitled

موتور هم عین مقاومت ، برای این که جریان ازش عبور کنه (اصطلاحا موتور کار کنه) باید دو سر اون اختلاف ولتاژ بوجود بیاریم. خب موتور DC دو تا ورودی داره که باید بهشون ولتاژ بدیم تا موتور راه بیفته:
url
خب مسلمه که این ولتاژ باید از آردوینو تامین بشه. حالا به نظر شما کدوم پایه های آردوینو ؟ دیجیتال یا آنالوگ؟
جواب این سوال کاملا مشخصه: دیجیتال!
حالا سوالی که پیش میاد این هستش که آیا به هر پایه دیجیتالی یا پایه های PWM؟
در واقع به هر دوتاش میتونید وصل کنید فقط به این بستگی داره که از موتور چی بخواید. یه موقع براتون مهمه موتور با تمام توان روشن بشه و کار کنه، یه موقع براتون مهمه بتونید سرعت چرخش موتور رو کنترل کنید و هرجا که لازم بود تغییر بدید. برای مورد اول میتونید از هر 2 پایه دیجیتال دلخواه آردوینو می تونید استفاده کنید ولی در مورد دوم تنها و تنها استفاده از پین های دیجیتال PWM جوابگو خواهد بود.

🙄 پس تا این جا یه جمع بندی کوچیک:
1.برای راه انداختن موتورDC باید دو سر آن اختلاف ولتاژ ایجاد بشه.
2.برای ولتاژ دادن به موتور DC از 2 پین دیجیتال آردوینو استفاده میشه.

حالا سوالی جدیدی که پیش میاد اینه که چطوری با آردوینو این اختلاف ولتاژ رو بوجود بیاریم؟ 🙄
خیلی خیلی خیلی سادست. بیاین فرض کنیم میخوایم موتور رو با نصف توان روشن کنیم ( یعنی کار دومی که نسبتا سخت تره ). طبق حرفی که پاراگراف قبل زدیم برای این کار نمی تونیم از هر پایه دیجیتالی استفاده کنیم و باید بریم سراغ پایه های PWM. طبق آموزش های جلسه قبل پین های دیجیتال PWM آردوینو uno عبارت بودن از: ؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟(برید جلسه قبل مرور کنید).دستوری که باهاش به پین های PWM مقدار می دادیم چی بود؟؟ analogWrite.
حالا برای ایجاد اختلاف ولتاژی که احتیاج داریم از دو تا دستور زیر استفاده می کنیم:

;(9,127)analogWrite

;(10,0)analogWrite

طبق توضیحات جلسه قبل با این کار ولتاژ(دقت کنید ولتاژ) پایه شماره 10 برابر با 0 ولت و ولتاژ پایه شماره 9 حدود 2.5 ولت خواهد بود بنابراین تونستیم بین دو سر موتور اختلاف ولتاژ ایجاد کنیم. اگه خط اول دستور به جای عدد 127 عدد 255 رو می نوشتیم ولتاژ پایه 9 به 5 ولت می رسید و موتور با حداکثر توان کار می کرد.

خخخخخب حالا دو تا سوال اساسی دیگه پیش میاد:
1. آیا پین های دیجیتال شماره 9 و 10 آردوینو رو مستقیم به موتور وصل کنیم؟؟
2.کدوم پایه رو به کدام ورودی موتور بزنیم ؟ اصن فرق داره؟؟؟؟

اول جواب سوال دوم:ببینید موتور DC چپ گرد و راست گرد داره. یعنی هم میتونه موافق جهت عقربه های ساعت و هم میتونه مخالف جهت عقربه های ساعت بچرخه. اگه ترتیب پین ها در اتصال به موتور عوض بشه هیچ اتفاقی نمی افته فقط جهت چرخش موتور تغییر می کنه.

حالا جواب سوال اول:اکیدا خیر! ازجمله مهم تریم مشخصه های عملکرد هر قطعه الکترونیکی جریان کاری اون هست. یا به عبارت دیگه
ولتاژ x جریان = توان کار قطعه.
هر پایه آردوینو ماکزیمم ولتاژ 5 ولت و جریان 40 میلی آمپر تامین خواهد کرد که میشه 200 میلی وات. حالا فکر کنید یک موتور نه چندان قوی مثلا10 وات داشته باشیم و بخوایم با آردوینو کنترلش کنیم. اگه مستقیم پین های آردوینو رو به ورودی های موتور بزنیم، موتور 10 وات میخواد تا درست کار کنه در حالی که آردوینو خودشو بکشه 0.2 وات زور داره بنابراین نمیتونه موتور رو راه بندازه و تحت فشار قرار می گیره همین عاملی برای سوختن برد آردوینو میشه. خب پس چیکار کنیم ؟ اینجاست که نقش درایور موتور پررنگ میشه.
این درایور بنده خدا کاری که میکنه این هستش که توانی که آردوینو برای راه اندازی موتور کم داره رو براش جبران می کنه و اینطوری هم موتور تغذیه میشه هم آردوینو سالم و سلامت به زندگیش ادامه میده.
حالا یه نکته وجود داره. اگه درایور موتور DC رو سرچ کنید صدها مدل درایور پیدا می کنید. خب کدومش مناسب کار ماست؟ برای جواب دادن به این سوال باید بریم سراغ موتورمون و ببینیم که مشخصات الکترونیکیش چیه؟ (ولتاژ و جریان و توان نامیش) بعد بر اساس این مشخصات درایورمون رو انتخاب کنیم.
مثلا تو همین مثال قبلی موتور ما 10 وات بود بهتره برای این موتور درایوری در حدود 12 الی 15 وات انتخاب کنیم تا اگه یه موقع موتور در شرایط نا مساعدی قرار گرفت که بیشتر از توان نامیش ازش کشیده شد مشکلی پیش نیاد.
بنابراین شماتیک کلی اتصالات ما این شکلی میشه:
Untitled

درایوری که من برای این پروژه انتخاب کردم این هست:
L9110S_Dual_Hbridge_DC_Stepper_Motor_Driver_4-500x500

همونطور که معلومه این امکان رو داره که 2 تا موتور رو درایور کنه : MOTOR A و MOTOR B . شش تا هم پین هدر داره دوتا مربوط به کنترل موتور A، دوتا مربوط به کنترل موتور B و پایه ولتاژ و زمین. اگه توضیحات محصول رو بخونید (لینک فروشگاه) می بینید نوشته هر کانال فقط 800 میلی آمپر جریان خروجی داره (البته نسبت به آردوینو 40 میلی آمپر شاهی می کنه ها) بنابراین در انتخاب موتور دقت فراوانی کنید. تو این پروژه من از این موتور استفاده کردم:
Gear-Motor-Set2 (5)-500x500

شکل زیر نحوه اتصال درایور به آردوینو رو نشون میده:
L9110S-schematic-1024x727
این شکل چند تا نکته اساسی داره :
اول :اینکه وقتی موتور به ترمینال های MOTOR B وصل میشه باید پین هدرهای کنترلی B به آردوینو متصل بشن.
دوم:برای تامین ولتاژ درایور از یه منبع تغذیه بردبوردی استفاده شده که می تونه به جای آن هر منبع ولتاژی بین 5 تا 12 ولت قرار بگیره.
سوم:یه نکته مداری هست که حتما باید رعایت بشه و اون چیزی نیست به جز زمین مشترک. حتما باید بین منبع تغذیه و آردوینو پایه گراند مشترک باشه و گرنه مدار به درستی عمل نخواهد کرد.

خب خسته که نشدید؟
مدار رو بستید؟
الان سخت افزار پروژمون تموم شد و اما کد:
Untitled
دوستان دقت کنید من تعمدا از کد عکس می زارم تا مجبور بشید کد رو بنویسید 😆

در هدر برنامه پین هایی رو که به پین های کنترلی موتور درایور وصل کردیم معرفی شده.
در تابع setup اون پین ها به عنوان خروجی تعریف شدن چرا که ما ( آردوینو) قراره برای موتور دستور بفرستیم.
در تابع loop مقدار پین 10 برابر با 0 و مقدار پین 11 برابر با 150 در نظر گرفته شده با این کد نویسی موتور در یک جهت خاص (یا ساعت گرد یا پاد ساعت گرد) شروع می کنه به چرخیدن .
اگه بخواید موتور در جهت مخالف بچرخه کافیه ترتیب 0 و 150 رو در کد نویسی تغییر بدید یعنی پایه 10 مقدار 150 و پایه 11 مقدار 0.
اگه بخواید موتور نچرخه هم خب هر دوتاشو 0 می دید.
و در انتها اگه بخواید موتور با حداکثر توانش کار کنه می تونید به 2 طریق عمل کنید:
1.به جای 150 از 255 استفاده کنید
2.به جای استفاده از دستور analogWrite و دادن مقدار 255 مستقیم از دستور digitalWrite استفاده کنید.

این جلسه یه کم طولانی شد ولی خب حرف برای گفتن خیلی زیاد بود.
پایان

جلسه نهم : راه اندازی ال ای دی RGB

سلام و عذر خواهی بابت تاخیر در آپلود کردن جلسه ها.
این جلسه قصد داریم در مورد ال ای دی های RGB حرف بزنیم. این که منطق کارشون چیه و با آردوینو چطوری باید راه اندازیشون کنیم.

خب اول میریم سراغ معرفی خود این ال ای دی ها. برای این که با تکنولوژی RGB آشنا بشید یه سری به این لینک بزنید و برگردید.

LED-RGB-8CD5kCA

قسمت اول ماجرا با کمک دوستان حل شد. میریم سراغ کار اصلی خودمون اتصال این ال ای دی به آردوینو. همونطوری که تو عکس بالا می بینید 4 تا پایه داره. سه پایه مربوط به رنگه و یک پایه مربوط به زمین. مسلمه که گراند(زمین) به گراند آردوینو وصل می شه، میمونن اون سه تا پایه. اون سه تا پایه باید به پین های دیجیتال آردوینو وصل بشن ولی سوالی که پیش میاد اینه که به هر پین دیجیتال دلخواه یا یه سری پین خاص. برای این که بفهمیم باید چیکار کنیم یه کم توضیح میدم:

ببینید ما یه موقع میخوایم رنگ سفید تولید کنیم. برای تولید این رنگ باید از سه رنگ قرمز، سبز و آبی با درصد های مساوی استفاده کنیم. یه موقع می خوایم رنگ بنفش تولید کنیم. برای رنگ بنفش درصد رنگ سبز با درصد رنگ قرمز صد در صد مساوی نیست (طبق قانون ترکیب رنگ ها ). حالا، گفتیم که پین های ال ای دی به پین های دیجیتال آردوینو وصل میشن. اگه قرار باشه مثل پروژه های قبل با دستور digitalWrite کار کنیم نمی تونیم برای هر رنگ درصد قائل بشیم و رنگ های مختلف ایجاد کنیم علتش اینه که وقتی می نویسیم (digitalWrite(8,HIGH داریم ولتاژ ( دقت کنید ولتاژ ) پین 8 رو 5 ولت می کنیم. وقتی می نویسیم (digitalWrite(8,LOW داریم ولتاژ این پایه رو صفر می کنیم. ما برای تولید رنگ بنفش ولتاژی که به سه تا پایه میدیم نباید مساوی باشه بلکه مثلا یکی باید 5 باشه یکی باید 3 باشه یکی باید 1.5 باشه. خب چاره چیه؟ چجوری ولتاژ متفاوت تولید کنیم؟

راه حل استفاده از PWM هست. اول یه سری به این لینک بزنید و ببینید که PWM چیه؟
با کمک منطق PWM و کد نویسی می تونیم یه کاری بکنیم که روی پایه های دیجیتال ولتاژ های بین 0 و 5 ولت بیفته. دستوری که با کمک اون از PWM استفاده می کنیم دستور analogWrite هست. مثلا (analogWrite(9,255
این دستور دو تا آرگومان داره. آرگومان اول شماره پین دیجیتال مورد نظره. آرگومان دوم یک عدد در بازه 0 تا 255 هست. وقتی صفر میدیم روی پایه دیجیتال شماره 9 ولتاژ 0 ولت می افته وقتی 255 می نویسیم روی پایه دیجیتال 9 ولتاژ 5 ولت می افته. یعنی یک تناسب بین عدد آرگومان دوم ما و ولتاژی که روی پین دیجیتال می افته وجود داره. حالا اگه قرار باشه ولتاژ 2.5 ولت روی پین 9 بیفته به جای 255 عدد 127 رو می نویسیم. یعنی میشه (analogWrite(9,127.
حالا آیا میشه به جای این پین شماره 9 هر پین دیجیتالی رو نوشت؟ جواب منفیه! پین های دیجیتالPWM آردوینو خاص هستن مثلا روی آردوینو UNO پین های PWM پین های شماره 3, 5, 6, 9, 10 و 11 هستن و تنها از این پین ها استفاده میشه. برای این که راحت تر پیداشون کنین روی برد کنار پین های PWM یه علامت مد کشیده شده:
dsku-fidhsfudhsfdsfidhsi00001
تا این جای جلسه منطق حاکم بر پروژه رو گفتیم الان میریم سراغ انجام خود پروژه عملیمون: می خوایم سه رنگ اصلی (قرمز، سبز وآبی ) رو با توالی 1 ثانیه روشن کنیم. مداری که استفاده می کنیم به صورت زیره:
learn_arduino_fritzing

دقت کنید که سه تا مقاومت به صورت سری در مدار قرار گرفته، این یه تکنیک برای افزایش طول عمر ال ای دی هاست.
خب مدار رو بستید؟ حله؟ بریم سراغ کد نویسی:

2015-09-13_11-45-17

اگه دقت کنید این کد به 4 بخش تقسیم شده. بخش اول هدر برنامه هست که متغیر های گلوبال رو توش تعریف کردیم (قبلا هم تاکید کردم حتما یه سری به برنامه نویسی بزنید). الان ما تو هدر برناممون اومدیم شماره پین های PWM مورد نظرمون رو (یعنی 9 و 10 و11) ریختیم توی سه تا متغیر. فایده این کار چیه؟ آخر برنامه میگم 😆

قسمت دوم برنامه که تابع setup هست اومدیم پین های دیجیتال استفاده شده رو output کردیم با این کار پین های دیجیتالمون رو کانفیگ کردیم.

قسمت سوم تابع RGB هست. اومدیم یک تابع نوشتیم که به وسیله اون رنگ ال ای دی RGB مون رو تغییر میدیم. به فرم نوشتن تابع دقت کنید. تابع سه تا ورودی اینتیجر گرفته که مقادیر پین های دیجیتال هستن. این مقادیر با دستور analogWrite توی پین های دیجیتال ریخته میشن.

و اما قسمت چهارم، تابع LOOP. توی این تابع 6 بار تابع RGB صدا زده میشه. دفعه اول (RGB(200,0,0 صدا زده میشه و با این کار نور قرمز روی ال ای دی با قدرت 200 ظاهر میشه (دقت کنید اگه به جای 200، 255 میزاشتیم با توان بیشتری ال ای دی روشن میشد ولی برای جلوگیری از خطر کور شدن میزاریمش 200 حتی شما اگه بزارینش 100 بازم بهتره). بعد تابع delay رو داریم که مدت 1 ثانیه صبر میکنه و تو این یک ثانیه رنگ ال ای دی قرمزه. بعد از delay تابع (RGB(0,0,0 رو داریم. با این دستور داریم ال ای دی رو خاموش می کنیم تا برای مرحله بعد که تولید رنگ سبزه آماده بشه. تا آخر تابع loop همینطوری پیش میره و رنگ ها یکی پس از دیگری نمایش داده میشن.

پروژه ما اینجا تموم شد. اما:
1.اگه خواستید رنگ سفید درست کنید چون باید هر سه رنگ به یک میزان وجود داشته باشن از دستور (RGB(200,200,200 استفاده کنید.
2.اگه یادتون باشه تو هدر برنامه گفتم شماره پین ها رو می ریزیم تو متغیر. فایده این کار چیه ؟ فرض کنید به هر دلیلی پین شماره 10 آردوینو شما سوخت و شما تصمیم گرفتید به جای استفاده از پین PWM شماره 10 از پین PWM شماره 6 استفاده کنید. علاوه بر این که از لحاظ سخت افزاری باید تغییر مورد نظر رو انجام بدید باید توی کدنویسی تون هم این تغییر رو لحاظ کنید. الان که شماره پین تو هدر برنامه تعریف شده شما فقط و فقط همون خط معرفی پین شماره 10 رو به پین شماره 6 تغییر می دید. ولی اگه تو هدر برنامه شماره پین رو تو متغیر نریخته بودیم برای این تغییر لازم بود هم توی دستور pinMode هم توی دستور analogWrite عدد 10 رو به 6 تغییر می دادید. البته ما الان کدمون بیست خط هم نیست ولی وقتی خطوط کد نویسی زیاد بشه این کار خیلی به چشم میاد.

پایان جلسه

جلسه سوم : سخت افزار آردوینو

به نام خدا موضوع این جلسه، آموزش سخت افزار آردوینو هست که بیس آموزش، آردوینو UNO است.

ArduinoUno_R3_Front (1)

متاسفانه تو این آموزش نمی تونیم به صورت خیلی جزئی به آموزش الکترونیکی بپردازیم ولی جاهایی که ممکنه تو مفهوم مشکل وجود داشته باشه لینک دادیم به صفحه های فارسی که بچه های دیگه زحمت کشیدن. عکس زیر نمایش قسمت های مختلف آردوینو به تفکیک رنگه:

1
USB connector(قسمت زرد رنگ):
با این پورت آردوینو با کابل USB به کامپیوتر وصل می شه. حالا چه احتیاجی به این کابل USB وجود داره؟
1. تامین ولتاژ مصرفی آردوینو، به زبان ساده تر یعنی روشن کردن آردوینو.
2.پروگرام کردن آردوینو با همین کابل انجام میشه یعنی فقط کافیه کد رو داشته باشیم کابل USB رو وصل می کنیم و آپلود می کنیم.
3.ارتباط سریال بین کامپیوتر و آردوینو (این قسمت مربوط به بخش برنامه نویسی است که در جلسات آینده مورد بحث قرار می گیرد.)

سوکت آداپتور (قسمت صورتی رنگ) :
هروسیله ای برای روشن شدن به ولتاژ یا به اصلاح عامیانه تر برق احتیاج داره. آردوینو هم از این قاعده جدا نیست. برای روشن کردن آردوینو چند تا راه داریم. اولین راه همون کابل USB بود. حالا فرض کنید یه مدار با آردوینو بستیم که قراره توی یه مطب یا توی بانک ازش استفاده بشه. اگه قرار باشه تنها راه روشن کرد آردوینو کابل USB باشه، باید همه جا دنبال خودمون لپتاپ هم ببریم که منطقی نیست. حالا اومدن توی بردهای آردوینو یه سوکت قرار دادن که میشه به اون سوئیچ آداپتور وصل کرد و با همون ولتاژ مصرفی آردوینو فراهم میشه.
آداپتور-مودم-12-ولت-2-آمپر-شارژر-منبع-تغذیه-12v-2a-آداپتور-مودم-آدپتور-سوئیچ-هاب-آداپتور-هارد-آداپتور-12-اداپتور آداپتور ها ولتاژها وجریان های متفاوتی دارن. حواستون باشه اینطوریا هم نیست که هر ولتاژی دوست داشته باشیم به آردوینو بدیم. معمولا آداپتورهای 5 ولت یا 9 ولت به آردوینو وصل کنید. شدیدا پیشنهاد میکنیم که 12 ولت به آردوینو وصل نکنید چون در طولانی مدت مجبور می شید باهاش خداحافظی کنید.
حالا اومدیم یه بنده خدایی پیدا شد می خواست مدارشو برداره ببره وسط صحرا باهاش کار کنه و لپتاپ هم نتونه ببره. وسط صحرا ؟ پریز برق واسه آداپتور ؟راه حل: پایه vin (در مورد این پایه بعدا توضیح داده میشه).

منبع تغذیه (قسمت نارنجی رنگ):

Untitled
برای توضیح پین های این قسمت با مثال میریم جلو. فرض کنید دو تا سنسور داریم یکی دما یکی فشار. سنسور دما 5 ولت و سنسور فشار 3.3 ولت برای روشن شدن احتیاج دارن(همون VCC). از کجا ولتاژ بیاریم؟
اگه با avr کار کنیم باید دوتا رگولاتور 5 ولت و3.3 ولت بزاریم تا از خروجی این رگولاتورها به سنسورها ولتاژ بدیم ( اگه ولتاژ بیشتر از حد تحملشون بهشون داده بشه می سوزن).

حالا اگه با آردوینو کار کنیم این دوتا رگولاتوری که ازشون حرف زدیم به صورت پیش فرض روی خود برد قرار گرفته و خروجی 5 ولت و 3.3 ولت آماده و حاضر وجود دارن. یعنی اگه شما با یکی از راه های قبلی (کابل USB یا آداپتور) خود آردینو رو روشن کرده باشین روی این دو تا پایه ولتاژهای 5 ولت و 3.3 ولت آماده استفاده هستن (شک دارید ولتمتر بزارید).
علاوه بر این، دو تا پایه زمین (GND) هم داره. برای روشن شدن سنسور علاوه بر ولتاژ دادن باید پایه گراند هم متصل باشه در غیر این صورت با وجود وصل بودن vcc سنسور روشن نمیشه.

تا الان تکلیف 4 تا پایه روشن شد حالا میریم سراغ پایه Vin. تو قسمت سوکت آداپتور یه اشاره کوچیکی کردیم. فرض کنید یه پروژه داریم که باید دمای هوای صحرا در طول یک روز اندازه گیری بشه و به ایستگاهی در فاصله یک کیلومتری فرستاده بشه. پس باید به مدت یک روز آردوینو و سنسور دما و فرستنده بی سیم توی صحرا کار گذاشته بشن. وسط صحرا نمی تونیم با آداپتور آردوینو رو روشن کنیم (پریز برق نداریم خب) میریم سراغ کابل USB. برای استفاده از کابل باید لپتاپ ما بتونه به مدت یک روز شارژ نگه داره! عملا با دو روش قبلی کاری از پیش نمیبریم.
یعنی پروژه کنسل ؟ خیر میریم سراغ پایه Vin. میشه با باتری هم آردوینو رو روشن کرد . باتری دو تا خروجی داره : ولتاژ و زمین. کافیه خروجی ولتاژ باتری به پایه Vin و گراندش به گراند آردوینو وصل بشه. البته مثل آداپتور اینجا هم مجاز نیستیم هر ولتاژی بهش بدیم. سایت سازنده خودش پیشنهاد کرده ماکزیمم 12 ولت بهش بدید ( زیر 5 ولت هم قاعدتا نباید بهش ولتاژ داد).
البته پایه Vin یه کاربرد دیگه هم داره. وقتی ولتاژ آردوینو با آداپتور فراهم بشه روی این پایه همون ولتاژ آداپتور میوفته یعنی اگه آداپتور 9 ولت وصل کرده باشید روی این پایه ولتاژی حدود 9 ولت میوفته. زمانی هم که آردوینو با کابل USB روشن بشه روی پایه Vin تقریبا 5 ولت میوفته.

و اما پایه IOREF. سطح منطقی ای که برد باهاش کار میکنه روی این پایه میفته. مثلا آردوینو UNO روی پین های ورودی خروجیش با سطح منطقی 5 ولت کار میکنه ولی آردوینو DUE با ولتاژ 3.3 ولت کار می کنه.

در مورد پایه ریست پایان همین جلسه در قسمت کلید ریست توضیح میدیم.

ورودی و خروجی های دیجیتال (قسمت سبز رنگ):

Untitled
قبل از این که وارد موضوع اصلی بشیم شاید یه عده معنی دیجیتال و آنالوگ رو ندونن .اون دوستان برن اینجا یه دوری بزنن و بیان.
آردوینو 14 تا پین دیجیتال داره از D0 تا D13. این پین ها هم به عنوان ورودی هم به عنوان خروجی تعریف میشن. یه موقع دنبال این هستیم که رله خاموش روشن کنیم پس پین به عنوان خروجی در نظر گرفته میشه. بعضی موقع ها یه سنسور دیجیتال داریم (مثل سنسور تشخیص حرکت) در این شرایط پین به عنوان ورودی تعریف میشه.
یه نکته ظریفی این وسط وجود داره. درسته موتورها هم با پایه های دیجیتال کار میکنن ولی هر پایه آردوینو فقط 40 میلی آمپر جریان داره پس عملا موتور راه انداختن با آردوینو به تنهایی کار جالبی نیست و باعث سوختنش می شه.نه تنها موتور، هر سنسوری که جریانی بیشتر از تحمل آردوینو بکشه باعث سوختنش میشه. روی هر پین آردوینو هم PULL UP داخلی وجود داره که اگه پایه به عنوان ورودی در نظر گرفته بشه با برنامه نویسی میتونیم ازش استفاده کنیم.
بعضی از این 14 تا پین آردوینو علاوه بر دیجیتال بودن ویژه گی های دیگه ای هم دارن که توضیحشون همینجاست و جلسه های بعدی روی هر کدوم ازاونها پروژه انجام میدیم.
1- پایه های سریال (Rx & Tx) : پایه های D0 و D1 آردوینو به صورت پیش فرض به عنوان پایه های ارتباط سریال در نظر گرفته شدن. پروگرام کردن آردوینو از طریق کامپیوتر هم از طریق همین 2 تا پین صورت میگیره. طوری که وقتی آردوینو در حال پروگرام شدنه این دو تا پایه که به دو تا led وصل هستن شروع به چشمک زدن می کنن. خیلی کم پیش میاد از این دو تا پایه به عنوان پین های دیجیتال در حین انجام پروژه استفاده بشه. مثلا فرض کنید بیایم به پایه های D0و D1 رله وصل کنیم و با کد نویسی اون ها رو خاموش و روشن کنیم، در حین مسیر آپلود کردن کد تو نرم افزار آردوینو یه ارور میده چرا که پین هایی که برای پروگرام کردن لازم داره ما بهشون رله وصل کردیم و استفاده شدن. بنابراین اول رله ها رو جدا می کنیم بعد پروگرام می کینم و دوباره رله ها رو وصل می کنیم. خب چه کاریه؟ از اول به دو تا پین دیگه وصل می کردیم تا این مکافات کندن و وصل کردن رو نداشته باشیم.
حالا اومدیم و مجبور شدیم با ماژولی(مثل بلوتوث) کار کنیم که ار تباطش با آردوینو از نوع TTL بود، یعنی مجبور بودیم از پایه های Rx و Txاستفاه کینم. واقعا باید برای هر بار کد آپلود کردن دائم سیم جدا کنیم و وصل کنیم؟ جواب منفیه
شما میتونید به صورت نرم افزاری پین های ارتباط سریال رو اضافه کنید. البته نمیتونید از هر پین دلخواهی هم استفاده کنید. بسته به اینکه روی کدوم نوع آردوینو کار می کنید این پین ها متفاوت هستن. به این ترفند SoftwareSerial میگن که در آینده نزدیک روش مانور خواهیم داد.

2- اینتراپت (وقفه):
اول بخونید ببینید اینتراپت چیه.
در مورد کیس خاص ما یعنی آردوینو UNO دو تا وقفه خارجی روی پین های D2و D3 وجود داره که میشه با برنامه نویسی ازاونها استفاده کرد. روال کلی وقفه اینطوریه که وقتی روی پین D2 سیگنال بیفته (به عبارتی trigger بشه) میکرو دست از اجرای هر کاری بکشه و بره یه عملیات مخصوص وقفه انجام بده(اصطلاحا میگن تابع  وقفه رو انجام بده). برای مثال فرض کنید کد اصلی روی میکرو شمارش اعداد باشه، حالا ما یه وقفه تعریف کنیم که اگه پایه D2 توسط یه رله خارجی تحریک شد پیغام “Relay ” رو چاپ کنه روی lcd. برنامه رو استارت می کنیم. میکرو شروع میکنه به شمارش 1 ، 2 ،3 و همینطوری میره جلو روی عدد 8 رله را روشن میکنیم بنابراین در اون لحظه پایه D2 تحریک شده وتابع مربوط به وقفه باید انجام باشه بنابراین در عدد 8 متوقف میشه میره پیغام “Relay ” رو روی lcd نشون میده و بر میگرده در ادامه شروع میکنه 9 ،10 ،11 و….
شکل کلی یک پالس به صورت زیره:

clk
همونطور که از شکل معلومه هر پالس لبه بالارونده و لبه پایین رونده داره. وقتی از وقفه صحبت می کنیم می تونیم تعیین کنیم پالسی که به پایه D2 داده میشه روی کدوم لبه حساس باشه. یعنی اگه به لبه بالارونده پالس رسید زیر برنامه وقفه اجرا بشه یا روی لبه پایین رونده. حتی میشه تعیین کرد به ازای هر تغییری که در سطح منطقی بوجود میاد زیر برنامه اجرا بشه.

3- 6 تا پین از 14 پین دیجیتال آردوینو UNO به صورت PWM هم کار میکنن. پین های 3، 5، 6، 9، 10 و 11. وقتی از PWM صحبت می کنیم یاد راه اندازی موتورهای DC می افتیم. ما میتونیم با استفاده از مد کاری PWM به موتورهای DC سرعت چرخش متفاوتی بدیم. با نحوه عملکرد این مد توجلسات آینده با جزئیات بیشتر و دقیق تر آشنا میشیم.

4- هر سنسوری برای برقراری ارتباط با پردازنده از یه پروتکل استفاده میکنه. بعضی ها از SPI و بعضی ها از I2C استفاده می کنن (البته یه سری از سنسورها هم ساده تر ازاین حرفا راه اندازی میشن که بعدا می بینیم). روی برد آردوینو برای هر کدوم از این دوتا پروتکل ارتباطی، پین های مشخصی در نظر گرفته شده.
اول در مورد ارتباط I2C حرف میزنیم. کلا اگه بخواهیم تشخیص بدیم سنسوری که قراره باهاش کار کنیم I2C هست یا نه کافیه به پین هاش نگاه کنیم اگه SCL و SDA داشت زدیم وسط خال. قدم بعد از تشخیص پروتکل ارتباطی سنسور، اینه که وصلش کنیم به آردوینو. برای آردوینو UNO از پین های آنالوگ A4 و A5(تو همین جلسه میگیم کجاس) استفاده میکنیم ولی بقیه مدل های آردوینو دقیقا پین هایی به اسم های SCL و SDA دارن. در آینده نزدیک با راه اندازی یه سنسور I2C کامل متوجه میشید داستان از چه قراره.

میایم سراغ SPI .برای تشخیص سنسور SPI دنبال دو تا پین تابلو برگردین: MOSI و MISO. روی برد آردوینو پین های دیجیتال 10 و 11 و 12 و 13 مخصوص پروتکل SPI هستن. ما گفتیم دنبال دوتا پین بگردین الان 4 تا پین باید وصل کنیم چی شد؟ MOSI و MISO پین هایی بود که با دیدنشوم مطمئن می شدیم سنسور از نوع SPI هست ولی در حقیقت این روش ارتباطی با 4 تا سیم داده رد و بدل میکنه به خاطر همین ما هم 4 تا پین معرفی کردیم.

5- پین دیجیتال شماره 13. این پین تو آردوینو خاصه چرا که یه led بهش وصله. گهگاهی توی پروژه هایی که داریم انجام میدیم لازمه برای آلارم یا حتی چک کردن یه LED رو روشن خاموش کنیم. مثلا فرض کنید یا سنسور تشخیص حرکت داریم و هدف اینه که به محض تشخیص هر نوع حرکتی یه آلارم به ما بده. میتونیم از این led داخلی استفاده کنیم تا به محض تشخیص جا به جایی این led روشن بشه.

پین AREF در قسمت آنالوگ توضیح داده خواهد شد.

• ورودی آنالوگ (قسمت آبی رنگ):
Untitled
6 پین بالا ورودیهای آنالوگ برد آردوینو است که با نام های A0 تا A5 مشخص شده اند. بعضی سنسورها مثل فوتوسل انالوگ هستن یعنی داده هاشون به صورت پیوسته تغییر میکنه. بدون شک نمیشه داده این سنسورها رو با پایه دیجیتال خوند پس میایم سراغ پایه آنالوگ.  خروجی سنسور وارد یه مبدل آنالوگ به دیجیتال (ADC) ده بیتی میشه و عددی بین 0 تا 1023 به عنوان داده سنسور مورد استفاده قرار می گیره. این در شرایطی هست که سنسور با ولتاژ 5 ولت کار کنه ( یعنی ماکزیم ولتاژ قابل تحمل اون 5 ولت باشه). وقتی ولتاژ قابل تحمل سنسور پایین تر باشه(مثلا 3.3 ولت) لازمه اون ولتاژ به پایه AREF هم داده بشه تا ولتاژ ورودی مرجع آنالوگ به 3.3 ولت تبدیل بشه. با اینکار رزولوشن تبدیل آنالوگ به دیجیتال بالاتر میره.

حالا یه بنده خدایی پیدا شده توی پروژش اصلا سنسور آنالوگ نداره ولی 15 تا سنسور دیجیتال باید راه بندازه. بالاتر گفتیم که کلا 14تا پین دیجیتال داریم که پین 0 و 1 هم عملا قابل استفاده نیست. بنابراین فقط 12 تا پین دیجیتال باقی میمونه در حالی که ما 15 تا سنسور داریم. یا باید بریم سراغ یه آردوینو دیگه که تعداد پایه هاش بیشتر باشه یا از یه تریک جدید استفاده کنیم . تریک جدید اینه که اون 6 تا پایه آنالوگ میتونن به عنوان دیجیتال هم استفاده بشن. یعنی چی؟
یعنی ما میتونیم به پایه A0 بگیم پایه شماره 14 دیجیتال و تا آخر به A5 بگیم پایه دیجیتال 19. با این کار دقیقا 20 تا پایه دیجیتال داریم که با کم کردن پایه 0 و 1 (به خاطر آپلود کردن کد) عملا 18 تا پایه دیجیتال داریم (هورا شدیم).

کلید ریست (قسمت آبی رنگ):

Untitled

گاهی اوقات در روند اجرای یه پروژه لازم میشه برنامه از اول اجرا بشه. مثلا فرض کنید پروژه شمارش تعداد نفراتی باشه که روزانه وارد یه محیط اداری میشن. اگه قرار باشه برنامه ریست نشه هر روز به تعداد نفرات شمارش شده اضافه میشه و داده دقیقی در دسترس نیست بنابراین لازمه روزانه مدار ریست بشه. حالا یا میتونیم یه صورت سخت افزاری ریست کنیم یعنی کلید ریست رو فشار بدیم یا میتونیم از پین ریست (RESET) استفاده کنیم. پین ریست که توی قسمت منبع تغذیه قرار داره به محض دریافت سطح منطقی 0 مدار رو ریست میکنه و برنامه از اول شروع میکنه به انجام شدن. از هر روشی که استفاده کنیم برنامه از اول اجرا میشه.